777 HIGHTEC

SPC570S50 c-startup example

Quick Giude

Table of Contents

1. Terms & Abbreviations

2. Introduction

2.1. Prerequisities

2.2. HW resources

3. Example overview

3.1. Application perspective

3.2. Component view

3.2.1. Application component

3.2.2. BSP component

3.3. Execution flow

4. Example Import & Build

5. Microcontroller default configuration
5.1. Microntroller platform setup
5.2. BSP default settings

Appendix A: Document References

Appendix B: Document history

© N N N o &~ A W W W W DN N DN

=
o

PP7HIGHTEC

1. Terms & Abbreviations

BSP
Board Startup Package

crt0
'C' run-time environment initialization code

HAL
Hardware Abstraction Layer

EVB
Evaluation Board

PIT
Periodic Interrupt Timer

uC
Microcontroller

Copyright © 2018 HighTec EDV-Systeme, GmbH SPC570S50 c-startup example - Quick Giude | 1

PP7HIGHTEC

2. Introduction

A c-startup example is a small functional project designed to simplify an evaluation phase of the
SPC570S50 microcontroller. It comes with necessary low-level functions like a startup code, a
minimalistic hardware abstraction or predefined memory partitioning. On top of this low-level
implementation, it provides a reference application code running on all present cores.

2.1. Prerequisities

e SPC570S50 device
e An evaluation board (SPC57xxMB + SPC570S50)

e HighTec Development Suite, version: 4.9.3.0

2.2. HW resources

Hardware resources used by this example:

HW unit channel / output pin function
GPIO PA [0] Core [0] LED control
PITO Channel [0] Core [0] periodic interrupt

Tab. 1. HW resources

By default, the evaluation board does not have a connection between PA port and LEDs. To enable
LED control, the user needs to connect wires between Port A header and User LEDs.

Copyright © 2018 HighTec EDV-Systeme, GmbH SPC570S50 c-startup example - Quick Giude | 2

PP7HIGHTEC

3. Example overview

3.1. Application perspective

From the user perspective, the application functionality consists of a simple LED blinking, where each
active core toggles its LED through a dedicated uC pin. The initialization code sets the toggling period
in multiples of 250ms according to Coreld number read during the run-time.

SPC570550 x~ HW interrupt
I_ ~~ "1 Shared code
(=) \;77.7777.777777777777
" | bsp_timer_Init(channel 0) ‘
= e
E | T T T T e T T T T
S | TimerMulticorelsrHandler() :4—"'/@
PIT channel [0]

Eﬂ
PA [0]#

Fig. 1. Application view

3.2. Component view

The example consists of two components, Application (app), and BSP (bsp), each of them in its project
folder.

¥ HighTec Project Explorer 22

w 5 spcST0s50_c_startup - 4.9.3.0
i Includes

R 3PP
v g bsp
= crtd
&= hal
= uc

Fig. 2. Project folder view

3.2.1. Application component

A reference application implementing the functionality of the example, LED blinking by each core. The
execution flow is the same on each core. Application folder represents a playground where the user
can extend the example functionality.

Copyright © 2018 HighTec EDV-Systeme, GmbH SPC570S50 c-startup example - Quick Giude | 3

PP7HIGHTEC

3.2.2. BSP component

A BSP package represents toolchain and microcontroller dependent SW part that needs to be tailored
to a particular microcontroller derivative, here to SPC570S50. It assembles three related elements.

crt0
A mandatory 'C' runtime initialization (crtO), running immediately after the hardware reset up to
the user entry point, here shared_main() function.

hal
A default hardware platform configuration and a user API for selected uC hardware modules. The
BSP platform configuration prepares uC to its optimal execution performance. The application
part calls the platform initialization function during crtO PreInit callback.

uc

Microcontroller dependent low-level implementation of BSP API interface functions. Plus it
contains pre-defined memory partitioning provided in a dedicated linker file.

Detail description of BSP elements is part of following technical notes [1], [2], [3].

Application

uC Linker file

Microcontroller

Fig. 3. Component view

3.3. Execution flow

The RESET core is responsible for the initialization of shared resources before enabling inactive cores.
Once other core starts running, they can rely on stable hardware environment.

Copyright © 2018 HighTec EDV-Systeme, GmbH SPC570S50 c-startup example - Quick Giude | 4

PP7HIGHTEC

Application

CrtQPrelnit > bsp_crtO_Prelnit o
V| |<—_| bsp_uc_InitPlatform
I I
| I
I I
‘C’ run-time I I
initialization I I
< I I
| I
CrtOPostinit > I bsp_crtO_Postlnit !
g e bsp_isr_Init
< < '
I I
| I
i ;I |
: B '|| bsp_timer_Init
< T
I P '|| bsp_pin_Init
| - !
| I
: Timer ISR —pf < >|;| bsp_pin_Toggle
: Timer ISR —pf < >|:| bsp_pin_Toggle
I |

Fig. 4. Simplified individual core execution flow

All software parts of the example decide the right execution path according to CorelD read during the
run-time. Such run-time read allows to get core specific behavior and still share the same code. Such
shared approach simplifies microcontroller learning phase and first trials in case of a multi-core
platform.

Copyright © 2018 HighTec EDV-Systeme, GmbH SPC570S50 c-startup example - Quick Giude | 5

PP7HIGHTEC

4. Example Import & Build
Follow these steps to import an example project to the HighTec IDE environment:

1. From menu File - Import -> General choose an option Existing Projects into Workspace
2. Browse for your project location

3. Select project

4. Leave copy to the workspace option check box empty

5. Click Finish
Activate the project from menu Project - Set Active Project.
Build the project from the menu Project - Build Project.

The output binary file is located under the _irom_build folder.

Copyright © 2018 HighTec EDV-Systeme, GmbH SPC570S50 c-startup example - Quick Giude | 6

PP7HIGHTEC

5. Microcontroller default configuration

5.1. Microntroller platform setup

c-startup example comes with a predefined SPC570S50 hardware platform configuration that is part
of bsp\uc\uc_spc570s50\uc_spc570s50 cont.h file.

There two clock parameters that the user can override outside the BSP package to adjust the clock
system according to physical properties of the evaluation board.

Code 1. SPC570S50 User controlled clock parameters

/* XTAL_CLOCK: External crystal clock */
#ifndef UC_XTAL_CLOCK

#tdefine UC_XTAL_CLOCK 40
#endif

/* SYS_CLOCK: System clock for cores [MHz] */
#ifndef UC_SYSTEM_CLOCK

#define UC_SYSTEM_CLOCK 80

#tendif

Based on these two clock parameters, the BSP adjusts microcontroller platform configuration to get
optimal execution performance. In the same time, it keeps selected peripheral clocks setting invariant of
user-controlled clock parameters.

Code 2. SPC570S50 default values of selected peripheral clocks

/* Peripheral clocks */

#define UC_PBRIDGE_CLK 40
#define UC_PER_CLK® 40
#define UC_SARADC_CLK 10
#define UC_CTU_CLK 80
#define UC_DSPI_CLK 80
#define UC_LIN_CLK 80
#define UC_ETIMER_CLK 80
#define UC_CAN_CLK 40

5.2. BSP default settings

BSP package comes with a predefined setting to make a startup phase with the microcontroller an
easy task. The user can change this setting by assigning corresponding symbols a different value.

Copyright © 2018 HighTec EDV-Systeme, GmbH SPC570S50 c-startup example - Quick Giude | 7

PP7HIGHTEC

Code 3. SPC570S50 BSP default setting

/* BSP HW Initialization control
* @ = OFF, no checks of correct UC configuration values
* 1 = ON (default), uC spec checks group of parameters for their
* correct HW setting */

#ifndef BSP_HW_INIT_CHECK

#define BSP_HW_INIT CHECK 1

#tendif

/* BSP_CORE_ENABLE: Inactive Core Enable control
* @ = OFF, inactive cores will not be enabled by bsp_crt@_PostInit()

* 1 = ON (default), inactive cores will be enabled by bsp_crt@_PostInit() */
#ifndef BSP_CORE_ENABLE
#define BSP_CORE_ENABLE 0
#tendif

/* BSP_ISR_TABLE: BSP implementation of ISR table in RAM
* @ = OFF, BSP will not implement its bsp_isr_table[1024] in RAM
* user must provide his own ISR table (either ROM or RAM)
* 1 = ON (default), BSP implements its bsp_isr_table[1024] in RAM */
#ifndef BSP_ISR_TABLE
#tdefine BSP_ISR_TABLE 1
#endif

/* BSP_PIT _SUPPORT: BSP PIT timer control enable/disable
* @ = OFF, PIT timer will not be initialized and PIT interface disabled
* 1 = ON (default), PIT timer under BSP control */

#ifndef BSP_TIMER_SUPPORT

#tdefine BSP_TIMER_SUPPORT 1

#tendif

/* SYSCLK®@ Output Enable Control
* @ = OFF, switch off clock generation setting
* 1 = ON, BSP will enable clock generation output */
#ifndef BSP_SYSCLKO_OUT
#define BSP_SYSCLK® OUT 1
#endif

/* SYSCLK1 Output Enable Control
* @ = OFF, switch off clock generation setting
* 1 = ON, BSP will enable clock generation output */
#ifndef BSP_SYSCLK1_OUT
#tdefine BSP_SYSCLK1_OUT 0
#tendif

Copyright © 2018 HighTec EDV-Systeme, GmbH SPC570S50 c-startup example - Quick Giude | 8

PP7HIGHTEC

Appendix A: Document References

[1] "SPCbhx c-startup - 'C' run-time initialization", HighTec EDV Systeme GmbH, 2018
[2] "SPCbhx c-startup - Linker file template", HighTec EDV Systeme GmbH, 2018

[3] "SPCbhx c-startup - Hardware Abstraction Layer", HighTec EDV Systeme GmbH, 2018

Copyright © 2018 HighTec EDV-Systeme, GmbH SPC570S50 c-startup example - Quick Giude | 9

PP7HIGHTEC

Appendix B: Document history

Version Date Changes to the previous version

1.0 February 2018 Initial version

Copyright © 2018 HighTec EDV-Systeme, GmbH SPC570S50 c-startup example - Quick Giude | 10

P7HIGHTEC

HighTec EDV-Systeme GmbH
Feldmannstrasse 98, D-66119 Saarbrticken
info@hightec-rt.com

+49-681-92613-16

www.hightec-rt.com

	SPC570S50 c-startup example: Quick Giude
	Table of Contents
	1. Terms & Abbreviations
	2. Introduction
	2.1. Prerequisities
	2.2. HW resources

	3. Example overview
	3.1. Application perspective
	3.2. Component view
	3.2.1. Application component
	3.2.2. BSP component

	3.3. Execution flow

	4. Example Import & Build
	5. Microcontroller default configuration
	5.1. Microntroller platform setup
	5.2. BSP default settings

	Appendix A: Document References
	Appendix B: Document history

